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This paper is a detailed differential geometrical study of chemically reacting 
systems. In particular the following coordinate-free properties of chemically 
reacting systems are obtained: 1) the general solution of the intrinsic reaction 
coordinate (IRC) (henceforth referred to as meta-IRC), 2) "extended" defini- 
tions of the Hessian matrix and normal vibrations at any non-equilibrium 
point on the surface, and 3) clarification of the close connection between the 
geometry of meta-IRC and the geography of the surface at a transition point. 
The theory is elucidated using a model potential surface. 

Key words: Reaction coordinate-Intrinsic reaction coordinate (IRC) ap- 
proach - Chemic, ally reacting systems, differential geometrical study of ,-~ 

1. Introduction 

The picture of reaction coordinates has been conveniently utilized to abstract the 
essential nature of chemical reactions and many models of reaction processes have 
been proposed within the framework of reaction coordinates; the pioneering 
transition state theory [1] has paved the way for rationalization of reaction 
coordinates. 

With the advent of qaantum mechanical treatments describing the intrinsic forces 
governing the stability and interaction of atoms and molecules, new light was 
thrown on the theoretical treatments of chemical reactions. The major goal in this 
area of research is to calculate the adiabatic potential energy surfaces of reacting 
systems and to correlate the characteristics of the electronic structure of systems 
with the favorable reaction path in terms of reaction coordinates (see, for example, 
[2J). Recent works [3, 4] have tried to obtain geometrical images of the transition 
state on multi-dimensional potential energy surfaces in conjunction with reaction 
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coordinates. In this connection, with the development of high-speed computers, 
one has come to be able to analyze with reasonable accuracy the adiabatic potential 
energy surfaces of chemically reacting systems. 

Although the reaction coordinate had been used as a convenient and qualitative 
concept, Fukui [5] proposed the concept of intrinsic reaction coordinate (IRC) 
as a quantitative one based on a firm theoretical foundation, and Fukui et al. [6-8] 
have developed the reaction ergodography in terms of the IRC. The IRC defines 
for chemically reacting systems an idealized locus of nuclei on the adiabatic 
potential energy surface; the IRC is a curve passing from the initial to the final 
basin (or valley) by way of the transition point on the surface. Further recent 
studies have confirmed the utility of the concept of IRC [9, 10]. 

In this paper, we make a detailed differential geometrical study of adiabatic 
potential energy surfaces and reaction coordinates in the same manner that has 
proved so successful in analyzing the geometrical properties of visual 2-dimen- 
sional surfaces embedded in 3-dim. Euclidean space. We obtain various properties 
of geometrical importance about the adiabatic potential energy surface and IRC. 
In particular, special attention is given to the geometrical properties of the surface 
and IRC in the neighbourhood of the transition point. We also extend the notion 
of IRC in order that one may apply the notion of IRC to any reaction that may 
occur on a fixed adiabatic potential energy surface; from any point on the surface, 
one will be able to follow the idealized locus of chemical reaction by tracing the 
unique IRC along the gradient field of the adiabatic potential. This extended 
version of IRC will be referred to as meta-IRC. It will be clarified in the text that 
these geometrical properties are invariant under any coordinate transformation; 
consequently, we overcome the difficulty, pointed out by Stanton and McIver [3], 
that the use of curvilinear coordinates in the description of potential energy surfaces 
and reaction coordinates does not allow coordinate-free interpretation. 

2. Geometry of Chemically Reacting Systems 

One can trace the motion of the constituent nuclei of a chemically reacting system 
by the locus of an Euclidean multidimensional vector x: 

x = ( x l , . . . ,  x aN) (2.1) 

where we suppose that the system is composed of N nuclei and the x i (i = 1 , . . . ,  3N) 
are mass-weighted Cartesian coordinates. Let us introduce now an augmented 
3N+ 1 - d i m .  Euclidean space E3N+ 1, the 3N+ l ' th coordinate x 3N+ 1 of which is 
referred to as the energy-coordinate.1 Since the dynamical motion of any chemi- 
cally reacting system is characterized by a constant of motion, i.e., the total energy 
E of the system, the locus of x is then represented by a plane curve r in E3N+ 1 
(see Fig. 1) : 

1 The 3N§ l ' th coordinate x 3N+ 1 is supposed to represent the total energy and adiabatic potential 
energy of the chemically reacting system. 
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r= (x ,  x3N+ 1); x 3s+1 ----- E=cons t .  2 (2.2) 

Although, in principle, the dynamical motion of the system is fully described by 
tracing the locus of r, one may often conveniently introduce n generalized coordi- 
nates q~ . . . . .  q" ( n < 3 N - 6 )  and trace the motion of the system in terms of a 

Fig. 1. Dynamical motion of the chemically reacting 
system in terms of the flight level of an airplane 
(marked with -) and Jits shadow on the adiabatic 
potential energy surface U (marked with x)  in the 
framework of a mass-weighted Cartesian coordinate 
system { x I . .  x3Nx3U + ~ } and a curvilinear coordinate 
system {ql . . .  q,x3U + 1 } 

x3Nq 
I , ~  Dynamical motion 

Dynamical plane I ~ / 
x3N+ = E=const. I 1 ~ ' / 

iF  : /  / /  ,: / 
Potential surface 

~3N.L u : ; / ~ -  ~ ; 

. / / / :k/ '"v / 
• 

restricted number of  coordinates; particularly for systems containing large 
molecules such as biological systems, it may be tractable to analyze only a few 
vibrational modes of interest rather than a huge number of  normal vibrations at a 
time. Then, the vector r is described by n + 1 coordinates (see Fig. 1): 

r = r ( q  i) 
= ( x l ( q l  . . . .  , q n ) , . .  ", X3JV(qa . . . . .  q , ) ,  X3N+ i ) ;  

x 3N+ ~ = E = c o n s t .  (2.3) 

These n + 1 coordinates define a finite-dimensional Riemannian space, that is, an 
n +  1-dim. qt . . .q ,x3u+t_space" The first fundamental form of  this Riemannian 
space is given by using the line element ds of the underlying Euclidean space E3tr 1 
as follows: 

ds 2 = ( d x l ) 2  + . . .  + (dx3N)2 + (dxaN+ 1)2 

= L a i j d q i d q J + ( d x 3 N + l )  2 (2.4) 
i , j = l  

where 

aij -= 

3N 

(ox'/Oq i) (Ox'/OqO. (2.5) 
t = l  

This n + 1-dim. Riemannian space is apparently positive definite, and the Rieman- 
nian space will be referred to as R, + 1. 

Now, we immerse the adiabatic potential energy surface U(x)  firstly in the 
3N+  1-dim. Euclide, an space E3u+I ; then, the surface U becomes a 3N-dim. 

2 The unit of the total energy and adiabatic potential energy is scaled so as to be equal to the mass- 
weighted coordinates. 
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hypersurface in E3N + 1. Likewise, when we describe x in terms of the n generalized 
coordinates, the adiabatic potential energy surface U is considered to be an n-dim. 
hypersurface in the n + 1-dim. Riemannian space R,+ 1. 

In this case, any point on U is also represented by the position vector r as 

r = ( x ( q l ,  . . . ,  q , ) ,  x3N + t); x3N+ 1 ~ - - -  U ( x ( q l  . . . . .  q , ) ) .  (2.6) 

Now, let us follow the dynamical motion of the chemically reacting system. 
Metaphorically speaking, the locus r of motion may be interpreted as the locus of 
an airplane flying horizontally at fixed altitude over a range of mountains U (see 
Fig. 1). Then, the usual description of reaction coordinates on the potential energy 
surface U is nothing but the shadow of the airplane on the mountains U, as is 
illustrated in Fig. 1. The airplane may experience complicated rollings on account 
of air streams created by the characteristic geographical features of U and con- 
sequently vibrational (de-)excitations may frequently occur; for example, the 
bobsled effect, the whirlpool effect [11], or the mechanism of chemical laser 
[ 12, 13] are most typical. If other dynamical systems or other degrees of freedom 
of motion in the system disturb the flight of the airplane, they may 1) alter the shape 
of the mountains U, or 2) bring about pitching of the airplane; such cases are not 
treated in this paper. 

We first investigate the geometrical (invariant under coordinate transformations) 
properties of the hypersurfaces, a) x 3N+ 1 =E,  and b) x 3N+ 1 = U ( x ( q l  . . . . .  q")) in 
the n + 1-dim. Riemannian space R, + 1- These hypersurfaces themselves are n-dim. 
Riemannian surfaces. One of our major goals of this and succeeding sections is to 
formulate the differential geometry of such n-dim. Riemannian surfaces embedded 
in n+l -d im.  Riemannian space R,+I.  The usual theory of hypersurfaces is 
concerned with n-dim. Riemannian surfaces embedded in .n + 1-dim. Euclidean 
spaces [14, 15]. More general theories deal with n-dim. Riemannian surfaces 
embedded in m-dim. Euclidean spaces [14]. However, these general theories will 
not be directly applied to the present problem; as far as the authors are aware, 
there is no detailed theory that deals with the particular case of the present problem 
where the 3N+ l ' th coordinate of the underlying Euclidean space EaN+I is 
preserved in n +  1-dim. Riemannian space R,+ 1 and is used to define unique 
hypersurfaces in R,+ 1- 

Clearly from the definition, these n-dim. Riemannian surfaces are positive definite. 
The first fundamental forms are described by a) for x 3N+ 1 = E  case :3 

ds'~ = alj dq i dq j (2.7) 

where aia is given by (2.5), and b) for x 3N+ 1 = U ( x ( q l  . . . . .  q")) case: 

ds 2 = b,j dq i dq j (2.8) 

3 We use the very convenient summation convention introduced by Einstein. If an index occurs 

twice in a term, once as a superscript and once as a subscript, summation over that index is thereby 
indicated [14] : specifically, in the present theory of n-dim. Riemannian surfaces, from 1 through n. 

Note that n is not the dummy index to be summed over. 
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where 

b~j = ai~ + ( c? U/&t ~) ( ~ U/~?q J). (2.9) 

One refers to ds, and ds b as the elements of arc length on the corresponding surfaces. 
The metric tensors a~j and b~i are symmetric covariant tensors of the second order, 
satisfying 

a~j = aji, b~j = b~i (2.10) 

a u, bii>O. (2.11) 

The metric forms are of course invariant under any coordinate transformation 
whose Jacobian is non-zero. We shall refer to the Riemannian surfaces constructed 
a) on the xaN+~=E-plane as R,(a), and b) on the xaN+l= U-surface as R,(b). It 
should be noted that at any equilibrium point Peq on U, we have 

bit = aq. (2.12) 

In other words, the Riemannian surface R,(b) is brought into contact with R,(a) 
at an equilibrium point Peq' This property is very useful, as is clarified below, if 
one wishes to investigate the dynamical motion of chemically reacting systems in 
terms of the geometrical properties of U. 

3. Geometrical Properties of the Riemannian Surfaces, R,(a) and R.(b) 

In this section, we concentrate mainly on the local differential geometry of  the 
adiabatic potential energy surface U, that is, R,(b). However, the differential 
geometry of R~(a) is the same as R,(b) because they differ only in their first funda- 
mental forms (2.7), (2.8). Therefore, unless otherwise specified, we shall develop 
the general theory of differential geometry of an n-dim. Riemannian surface 
R~ (=  R~(a), R~(b)) embedded in an n + 1-dim. Riemannian space R~ + 1. The first 
fundamental forms (2.7), (2.8) can be written in the form 

ds2 =gij dq i dq ~ (3.1) 

where the metric tensor gi; represents aij or bij. 

We show that a "unit normal vector" to the n-dim. Riemannian surface R, can be 
successfully introduced in the n+l -d im.  Riemannian space R,+ 1 (see (3.15)- 
(3.18)). This allows one to extend the theory of usual 2-dim. surfaces embedded in 
3-dim. Euclidean space [14] to the present problem as will be clarified below. 
Therefore, the corresponding formulae and notation in the theory of 2-dim. 
surfaces are also used here in order to describe the special geometrical properties 
of R,. 

3.1. Vector Space Properties 

A curve r lying on an n-dim. Riemannian surface R, is described by its arc length s 
on the surface: 

r=r(qi(s)) - (3.2) 
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The direction of the tangent to the surface curve (3.2) is that of  the vector 

d r / d s =  r i dqi/ds (3.3) 

where 

r i = ~ r / ~ q  i. (3.4) 

I f  one constructs all the possible curves on the surface that pass through a fixed 
point P0 on the surface, then one sees from (3.3) that their tangent vectors point 
from Po into all the possible directions within the plane spanned by the n vectors 
ri(Po) ( i= 1 . . . .  , n). This plane is referred to as the tangent plane of the surface at 
the point Po. The vector r~ is the tangent vector at Po on the curve 

q~(s) = s, qJ(s) = fixed for j r  i. (3.5) 

A curve is referred to as a parametric curve; a curve given by (3.5) is referred to as a 
qi-curve. Conversely, if one fixes q~ and allows all the other coordinates to vary 
freely, then one obtains a surface which is referred to as a q~-surface. For the 
covariant counterparts,  q~-curves and q~-surfaces are similarly defined. 

In n-dim. Riemannian vector space R,,  the basis vectors e~ ( i=  1 , , . . ,  n) of  the 
coordinate system {ql. . .q, .} are given in terms of vectors of  the underlying 
3 N +  1-dim. Euclidean space E3N + 1 bY ~ 

e i =r / .  (3.6) 

Also, we define the inner product  of  vectors in R. by considering them as vectors in 
the underlying vector space L~aN+ 1" 

Now, we introduce a basis e i dual to e~ by 

e i = g  ~J ej .  (3.7) 

The following bior thonormal  relationship holds for the two kinds of  basis sets : 

e i . eJ=g) / ,  e i . e j  = 6}. (3.8) 

This relationship shows that the dual basis e ~ is perpendicular to the q~-surface, 
while e~ is tangent to the @curve. Likewise, ei is perpendicular to the qz-surface, 
while e ~ is tangent to the q~-curve. Any vector v in R, is then represented in two 
ways by 

V = l)iei = l)i ei (3.9) 

where vi/v~ are the-contravariant /covariant  components of the vector. Using 
properties (3.6)-(3.9), the angle 0 between a pair of non-null vectors u, v in R, is 
defined by [16, 17] 

cos 0 = u-v / lu  ] tvl (3.10) 

where the inner product  and the norm are written as 

r It is assumed in this paper that the vectors r i (i= 1 .. . . .  n) are linearly independent. 
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u.  v =gi~uiv ~ = uivi (3.11) 

t.?=u ui. (3.12) 
In particular, the angle between e i and e i is given by 

cos 0=lg"g.] -1/2 (not summed over i). (3.13) 

It should be noted that the angle 0 thus defined is i ndependen t  o f  any  coord ina te  

t r a n s f o r m a t i o n  

q , i = q , i ( q l ,  . . .:, q , )  

whose Jacobian is non-zero. 

3.2.  C u r v a t u r e  P r o p e r t i e s  

Now, the curvature vector of the curve on R, is given by 

d2r/ds  2. (3.14) 

Obviously, the vector may lie out of the tangent plane. Then, let us introduce a unit 
normal vector n to, the tangent plane as 

n = N / N ,  n . n =  1 (3.15a) 

N =  ( - c~x 3N + 1 /3x l  . . . .  , - Ox 3N + 1/0x3~,  1) (3.15b) 
3N 

N 2 =  1 + ~ (GX3N+I/~xi)2, (3.15c) 
i=1 

This vector satisfies 

n . e i = O  ( i=1 . . . .  ,n), (3.16) 

which shows that the vectors e~ ( i= 1 . . . .  , n) together with n are linearly indepen- 
dent. It follows that any vector r in the n +  1-dim. vector space R~+ 1 can be 
represented using mutually independent vectors e i ( i=  1 , . . . ,  n), n as follows : 

r = (r)iei + (r) "+ tn (3.17a) 

where each component  of the basis vector is defined by 

(r) i=  e i. r (3.17b) 

(r) "+ l = n  .r. (3.17c) 

Particularly in R, (a ) ,  we have 

n=(0 . . . . .  0, 1) (3.18a) 

N =  1. (3.18b) 

Note that the success of  the introduction of the normal vector n by the explicit 
form (3.15), (3.18) is peculiar to the particular structure of  the presented n-dim. 
Riemannian surfaces Rn(a ), R , (b )  where the 3 N +  l ' th coordinate for energy is free 
from any coordinate transformation. 
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By using the unit normal vector n and the unit tangent vector t, which is obtained 
as a linear combination of e i ( i= 1 . . . . .  n), one may write the curvature vector 
(3.14) in the form 

d 2r/ds z :  pn + ~:~ t. (3.19) 

In this representation, 1) the magnitude p of the normal component of the curva- 
ture vector is referred to as the normal curvature, and 2) the magnitude ~G of the 
tangent component is referred to as the geodesic curvature of the curve. The 
curvature ~c of the curve is then given by 

•z = [dZr/ds2[2 : p~ + tc2. (3.20) 

We now study in more detail the two kinds of curvatures p, ~ which characterize 
the geometry of R, itself. To this purpose, one may easily find and utilize the 
formula of Gauss 

c~e/~qk i n (3.21) - -  f f  j k e i  + L~k 

and the formula of Weingarten 

,~n/cqqk = ij (3.22) - -g  Ljke ~ �9 

In these formulae, 1) Fj~ is the Christoffet symbol of the second kind, which is 
obtained from the Christoffel symbol of the first kind [jk, l] as follows: 

i il �9 r j~=g Uk, l] (3.23) 
[jk, l] = (1/2) (Ogkz/c~q j + OgUc~qk- Ogjk/Oq') 

3 N  

= ~ (c~2xt/c3qjc~qk)(Oxt/Oqt)+ (02xaN+ 1/c~qJc~qk)(c~X3N+ 1/~q~). (3.24) 
t = l  

and 2) Ljk is the coefficient of the second fundamental form of  the surface R,: 
3N 

Ljk = (32x aN+ I/c~qJc~q k -- ~ (~x aN+ 1/~x') (~2xt/c~qJ c~qk))/N (3.25) 
t = l  

where N is given by (3.15c). In R,(a), all the L~k are zero. Using the formula of  
Gauss, we can reduce (3.14) to 

d2r/ds 2 = Ljk(dqJ/ds) (dqk/ds)n + (d 2 q~/ds 2 + F}k(dqJ/ds)(dqk/ds))ei (3.26) 

and therefore we obtain 

p = Ljk(d q J/ds) (dqk/ds) (3.27) 

~c~t = (d2qi/ds 2 + Fjk(dq~/ds) (dqk/ds))e~. (3.28) 

In R,(a), the normal curvature p is identically zero. 

Using these results, one can analyze in detail the locus of curves on the surface R,. 
Of these, geodesic curves and lines of curvature are particularly important as we 
explain in turn. 

1) Geodesic curves: A geodesic curve satisfies [14] 

dZqi/ds z + Fjk(dqJ/ds) (dqk/ds) = 0 (3.29) 
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and therefore 

~ = 0 .  (3.30) 

A geodesic curve gives the shortest distance measured on the surface R,, provided 
that the two end points are located close to each other. In other words, a geodesic 
curve defines the intrinsic distance between any two points on R,. Along the 
geodesic curve we have 

d2r/ds 2 = pn. (3.31) 

In R,(a), the geodesic curve satisfies 

d 2r/ds~ = 0 (3.32) 

and the solution is of  course a straight line in the underlying Euclidean space 
EaN+ 1 �9 

2) Lines of curvature: We define the principal directions [16] of the Riemannian 
surface R,(b) by extremizing p, that is, 

6p=O. (3.33) 

Then, we have the secular equation 

(L jk  - -  p b j k ) ~  k = 0 ;  ~k ___ dqk /dsb .  (3.34) 

This equation defines n principal directions ~i~) ( e=  1 . . . . .  n) associated with n 
principal normal curvatures p~ (cr = 1 . . . . .  n). The lines of curvature are the curves 
which are everywhere tangent to the principal directions. The solutions satisfy 

j k Ljk ~(~)~(~) = p~cS~ (3.35) 
j k _ b jk~(~)~ - 6~ (3.36) 

where we assume that there is no degeneracy: p~ r pp for ~ r ft. The line of curvature 
itself satisfies Rodri[gues formula 

dn/dsb = - P dr/dsb (3.37) 

which can be obtained from (3.22) and (3.34). 

It should be noted that at any equilibrium point Peq o n  U, we have from gradU= 0 
that 

Ljk = 02 U/c~q j c~q k (3.38) 

bjk = ajk, dsb = ds, (3.39) 

and then, the principal direction satisfies 

(~2 U/c3q j c~qk-- Pajk)~k=o; ~k=dqk/ds~. (3.40) 

Here, L~k a t  Peq is nothing but thejk-element of the Hessian matrix ]102 U/Oq j c~qkH 
[4] which defines the normal vibrations of the system. In the usual definition, the 
Hessian matrix II?zU/c~q J c~qkll is not a covariant tensor of the second order at 
normal points on U. It follows that the normal vibrations that are obtained by 
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diagonalizing the Hessian matrix at normal points on U are not invariant under 
coordinate transformations. Therefore, we extend the definition of Hessian matrix 
in Sect. 4.2. and find extended normal vibrations which are invariant under co- 
ordinate transformations. Also, the relation between the line of curvature and the 
meta-IRC is given in Sect. 4.1. (B) and discussed in more detail in Sect. 4.2. (B). 

3.3. Particular Solution of the Line of Curvature 

If the line of curvature is also geodesic, then using a fixed constant vector ! the 
locus r is given as 

I. r --- const. (3.41 ) 

This equation shows that the curve is a plane curve (see Fig. 2). The proof  is given 
in the Appendix. 

x3N§ 

xJ 

x I 

Fig. 2. The locus v of the geodesic line of curvature. 
This curve lies entirely on a plane perpendicular to 
the vector I given in (3.41) of the text 

3.4. Dupin Indicatrix 

We show in this subsection another useful character of the Riemannian surface 
R,; namely the notion of Dupin indicatrix, which has been established in the usual 
theory of 2-dim. surfaces [14], and is also applicable in the study of the local 
geometrical character of U in the neighborhood of an arbitrary point on U in R,. 

The concept of Dupin indicatrix emerges as a result of employing a device that is 
helpful for obtaining some geometrical insight into curvature relations near a 
point Po on U. The device consists in carrying out a small parallel translation of the 
tangent plane at P0 and then investigating its curve of intersection with the 
surface U. The locus in the translated tangent plane is represented by 

Li~(Po)~itl J = _+ 1 (3.42) 

where t/i is the local coordinate chosen in place of qi, which is obtained by magni- 
fication of the curve of intersection in the ratio 1 :(2d)1/2, d being the length of the 
parallel translation. This locus is referred to as the Dupin indicatrix at Po. Here, 
the principal directions of curvature coincide with the directions of the axes of the 
Dupin indicatrix and the lengths of the half-axes are given by 
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Ip,I- , /2, . ,  Ip.l-,/2 (3.43) 

The Dupin indicatrix is classified as follows. 

1) An ellipsoid with center zero if the second fundamental form is definite; in this 
case, Po is referred to as elliptic point. 

The stable equilibrium point corresponds to the elliptic point. In the case n = 2, the 
Dupin indicatrix is illustrated in Fig. 3(a). 

2) Conjugate hyperboloids if the form is indefinite; in this case, Po is referred to as 
hyperbolic point. The tangent plane at P0 intersects the surface U in cones which 
are tangent at Po to, the asymptotic cones of the indicatrix. The cones of intersection 
satisfy 

Lu(Po) (dqi/dsb), (dqJ/dsb) = 0 (3.44) 

and are referred to as asymptotic cones of the surface. 

An unstable equilibrium point, a saddle, corresponds to a hyperbolic point. A 
transition point Ptr is a saddle possessing only one negative principal curvature. 
In the case n = 2, the Dupin indicatrix is illustrated in Fig. 3b; the asymptotic cone 
of the indicatrix retrogresses to a pair of asymptotic curves and the angle between 
them is bisected by the principal directions. This property is very important when 
one considers the solution of meta-IRC at the transition point Ptr (see Sect. 
4.1. (B)), and the relation with the normal coordinates at P~r (see Sect. 4.2 (B)). 

The other trivial cases are 3) the rank of L u is less than n -  1 (Po is referred to as 
parabolic point), and 4) all Li~ vanish (Po is referred to as fiat point; it is noted that 
R, is embedded in a flat space). 

Thus, we have obtained the intimate relationships between the geometry of any 
curve on the adiabatic potential energy surface U and the geometry of the surface 
itself. This will facilitate the dynamical study of chemically reacting systems in 
terms of the locus of trajectories cast on the surface U by the shadow of the airplane. 

Fig. 3. The Dupin indicatrix of 2-dim. surfaces at a) an 
elliptic point, b) a hyperbolic point. The lengths of the 
half-axes are given by a,b = [Pl]- 1/2, IP2[-1/2 (a) (b) 

4. Dynamical Motions on U and the Meta-IRC 

In this section, we shall analyze the dynamical properties of chemically reacting 
systems in terms of the reaction coordinate. The major results obtained in this 
section are 1) the general solution of IRC is given and will be referred to as meta- 
IRC, and permits the definition of a unique reaction coordinate starting from any 
non-equilibrium point on U, 2) the Taylor expansion of the potential energy U is 
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defined for application to curvilinear coordinate systems, 3) by defining an 
"extended" Hessian matrix at any point on U, coordinate-transformation- 
invariant normal vibrations are given, 4) at any equilibrium point Poq on U, the 
line of curvature exactly coincides with the normal coordinate and meta-IRC, and 
5) particularly at the transition point Pt~, from a 2-dim. cross-sectional viewpoint, 
the meta-IRC exactly bisects the asymptotic lines which are just the curves of  
intersection between U and the equi-energy plane xaN+t= U(Ptr)=Const. on 
which plane the airplane can narrowly fly across the transition point. 

Now the Lagrangian L of the chemically reacting system is given by 

L = (1/2)2 2 - U (4.1) 

where �9 signifies the derivative with respect to time. If we limit the degrees of free- 
dom of  the system to n ( n < 3 N - 6 ) ,  then (4.1) is reduced by using generalized 
coordinates q l , . . . ,  q, to 

L = (1/2)a~jgligl ~ -  U. (4.2) 

This is considered to be a Lagrangian in the Riemannian surface R,(a). In this 
Riemannian surface R,(a), the vector r = (x, x 3N+ 1) (xaN+ 1 = E =  const.) is essen- 
tially represented by, and therefore replaced by x, Hence, we shall use the vector x 
in place of r unless confusion arises. 

Lagrange's equation of motion is then given by 

7t i + Fjki 1~gl k = -- 8 U/Sqi. (4.3) 

The r.h.s, of  this equation is the contravariant component of the gradient field 
created by the adiabatic potential energy U. Generally speaking, the gradient field 
may depend on some external parameters which are now disregarded; such as the 
contribution from the other degrees of freedom or from other systems. Thom's 
beautiful theory of catastrophes [18] may be useful in studying this kind of  
problem s . 

4.1. Gradient Field and the General Solution o f  Me ta - IRC  

Now, we shall solve the equation of meta-IRC. The meta-IRC is defined as the 
locus of the dynamical motion of the system the direction of which is always tangent 
to the gradient field. The starting point of the dynamical motion can be chosen at 
any non-equilibrium point on U; the system may attain to the equilibrium point by 
tracing the locus of meta-IRC. If one further searches for the allowable mode of 
chemical reaction starting at the equilibrium point, then one can follow the locus 
of IRC which is nothing but the particular solution of meta-IRC. The differential 
equation of meta-IRC is now represented in the covariant form as 

5 After this work was completed, nice work of Collard and Hall I-21 ] appeared, where the orthogonal 
trajectories of the electron density are discussed in terms of 1) the theory of virial partitioning of Bader 
[22] and Srebrenik and Bader [23], and 2) the catastrophe theory of Thorn [18]. 
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dq~/(OU/Oq 1) . . . . .  dq,/(OU/c~q"). (4.4) 

It should be noted that the covariant component dqi of the displacement vector 
dr = dx relates with the generalized momentum pi in the form 

p~ = dq,/dt =gt~ . (4.5) 

Therefore, we can rewrite (4.4) as 

p~/(OU/Sq 1) . . . . .  p,/(OU/Sq') .  (4.6) 

This equation may allow a new interpretation for the dynamical motion along the 
meta-IRC on R,(a) that the direction of the generalized momentum along the 
meta-IRC is always tangent to the gradient field. This interpretation is inherent in 
the present particular problem where the adiabatic potential depends only on qi 
and not on c) i ( i= 1 . . . . .  n) (the explicit dependence of L on the time is of course not 
considered in this paper). 

The solution of  mel.a-IRC will be given A) at a normal point on U, and B) at an 
equilibrium point on U, 'in turn. A) At a normal point on U: There exist n -  1 
solutions of (4.4) which will be expressed by using n - 1  parameters cj 
(]'= 1 . . . . .  n -  1) as follows: 

~j(ql . . . . .  q , )=c j  ( j = l , . . . , n - l )  (4.7) 

where ~bj ( j=  1 . . . . .  n -  1) are the solutions of 

(OU/c3q~)(c3OJc~ql)=O ( j=  1 . . . . .  n--  1). (4.8) 

Note that solutions of  this kind are considered to be covariant versions of the 
solutions which are usually obtained for the differential equation written in terms of  
contravariant components [16]. in the present case, the contravariant version of  
(4.4) is given by 

dq ~ /( 0 U/~? q l ) . . . . .  dq'/( O U/~q,). (4.9) 

The solutions 4); ( j=  l , . . . ,  n -  1) of this differential equation may be equivalent 
to those of (4.4) and therefore one may start the following analysis by taking (4.9) 
as the fundamental differential equation; however, we shall choose (4.4) as the 
basic equation of meta-IRC because the covariant gradient field is more familiar 
and tractable to chemists rather than the contravariant one. 

Then, 
( j = l  . . . . .  n - 1 ) a s  

qj=q~;(ql . . . .  , q,,) ( j=  1 . . . . .  n -  1). 

Moreover, let us choose the n'th new coordinate q~ as 

q~ = ~,(ql ,  �9 �9 q,,) 

let us choose these parametric curves as the n - 1  new coordinates q~ 

(4.10) 

(4.11) 

where the condition satisfied by qS,, is that the Jacobian of  the coordinate trans- 
formation does not vanish: 
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~1/0ql  . . .  Od?./~ql 

det [[C3~)j/~qkl[ = 3Cpl)C3qn . . .  OOn/Oq, #0. (4.12) 

By using this new coordinate system, the new covariant components of the dis- 
placement vector and gradient field will be represented by 

dq~= (~?r dqk (j= 1 , . . . ,  n) (4.13) 

OU/Oq'J=(O(gj/Oqk)(~V/Oq k) ( j=  1 . . . .  , n). (4.14) 

Note that, on account of (4.8), all but one of the new covariant components of the 
gradient field are zero : 

OU/Oq'"#O, au/c)q'J=o ( j = l  . . . .  , n -  1). (4.15) 

Therefore, the differential equation (4.4) is transformed into 

dq;/0 . . . . .  dq;_ 1/0 = dq;/(O U/Oq'"). (4.16) 

Thus, we obtain the solution of meta-IRC as 

dq;r dq}=O ( j = l  . . . . .  n - l ) .  (4.17) 

This shows that the meta-IRC is nothing but the q~-curve. This solution includes the 
extension of the original IRC and defines a unique reaction coordinate that starts 
from any non-equilibrium point on the potential surface. This extension of the 
notion of I RC will prove effective not only for ground-state chemical reactions but 
also for excited-state chemical reactions where the starting nuclear configuration is 
usually far away from equilibrium. The dynamical motion along the meta-IRC is 
characterized by the one-dimensional displacement vector 

dx(=dr)=dq;e'". (4.18) 

The direction of th# vector coincides with that of the generalized momentum p~. 
Then, one may say that the meta-IRC is nothing but the p;-curve. On the other 
hand, the contravariant components of the displacement vector and gradient field, 
which do not in general vanish for j r  n, are given by 

dq'J=a 'J" dq~, ( j=  1 . . . . .  n) (4.19a) 

~U/~@=a 'j" OU/Oq '~ ( j=  1 . . . . .  n). (4.19b) 

The geometrical interpretation of the solution is illustrated in Fig. 4. As is easily 
seen from Fig. 4, in the q'"-surface, the potential remains constant along each 
q'J-curve (j#n):OU/Oq 'j=O (j#n). This shows that the q'"-surface represents 
the equi-potential surface, and hence the meta-lRC is orthogonal to the equi- 
potential surface. But it should be noted that, although the increase or decrease of 
the equi-potential q'"-surface is measured by the q'"-curve and hence the q'"-curve 
may be interpreted as the "promoting mode" of the chemical reaction, the meta- 
IRC is not identical with the q'"-curve but with the qs (or p~-) curve. This kind of 
incompatible relationship between the meta-IRC and the q'"-curve stems from the 
non-orthogonality of the q'"-curve to the other parametric q'J-curves 
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( j=  1 . . . . .  n -  1). If the q'"-curve is orthogonal to the other parametric curves, 
then we have 

a'"i=as ( j=  1 . . . . .  n -  1) (4.20a) 

and hence 

de tHa 'u l r  ( i , j = l  . . . . .  n - l ) .  (4.20b) 

In this case, (4.20b) shows that the equi-potential q'"-surface is considered to be an 
n -  1-dim. Riemannian surface in terms of the metric tensor all ( i , j=  1 . . . .  , n -  1); 
the q'"-curve becomes orthogonal to this equi-potential surface. Then, the q'"-curve 
becomes tangent to the meta-IRC and therefore the meta-IRC can be identified 
with the "orthogonal coordinate" q'"; we shall refer to this coordinate q'" as the 
normal meta-IRC, To summarize these results, we conclude that the coordinate 
q", which may be interpreted as the "promoting mode" of the chemical reaction, 
is identified with tlhe meta-IRC when (4.20) holds; in this case, the coordinate is 
referred tO as the normal meta-IRC. 

Along the normal meta-IRC, we have from (4.19) that all but one of the contra- 
variant components of the displacement vector and gradient field are zero: 

dq'"=a'="dq~r dq'J=O ( j = l  . . . . .  n - l ) .  (4.21) 

OU/Oq~=a'"=OU/Oq'"r OU/Oq~=O ( j = l  . . . . .  n - l ) .  (4.22) 

Now, if the meta-IRC becomes a geodesic curve on R,(a), then we have 

' " " -  ' 1 ,  '"J ' a = a , j = 0  ( j = l , .  n - l )  (4.23) a - - a n n  z . . ,  

which guarantees that the geodesic meta- IRC is a normal meta-IRC. In this case, 
we find from (3.13) that the angle between e'" and es is zero (rood 2~), which shows 

e~ = e '" ( 4 . 2 4 )  

and we finally obtain 

dq'"=dq~ (4.25) 

accompanied by 

OU/ Oq~ z OU/ Oq'". (4.26) 

Now, (4.25) shows that both the direction and magnitude of the generalized 
velocity 0 '" exactly coincide with those of generalized momentum p~. Moreover, 
Lagrange's equation of motion along the geodesic meta-IRC is reduced from (4.3) 
to the classical Newtonian equation of motion as if it were a one-dimensional 
motion in flat space: 

gl '" = - OU/Oq'". (4.27) 

(B) At an equilibrium point Peq on U: In this case, one has 

OU/Oq 1 . . . . .  OU/Oq" = O. 

Then, the solution of (4.4) satisfies 

(02 U/Oq ~ Oq J -  2a~/) dqi/ds~ = 0. (4.28) 
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This is nothing but the equation of line of curvature at the equilibrium point Peq 
with 2=p  that is given by (3.40). Also, we show in Sect. 4.2. (B) that the normal 
coordinate at Peq coincides with the line of curvature and hence with meta-IRC, 
and we discuss the relationships in more detail in Sect. 4.2. (B). 

Meta-IRC : q'n-(Or p'n-)Curve 

/ ,..= / f ..,, ~ ] 
/ ~ ~j . 

Equi-potential surface :q'n-surface Fig.  4. G e o m e t r y  o f  the  r e a c t i o n  p a t h  

4.2. Normal Vibrations and the Relationship with the Meta- IRC 

The normal vibrations of chemically reacting systems are usually obtained by 
diagonalizing the Hessian matrix. However, the so-called Hessian matrix 
I] C~2 U/c~q i @)]1 is not, as pointed out in Sect. 3.2., a covariant tensor of the second 
order at normal points on U so the normal vibrations thus obtained are not 
invariant under coordinate transformations. We shall give in this section the 
"extended" definition of the Hessian matrix ]1Hifl which is a covariant tensor of 
the second order, and find "extended" normal vibrations which are invariant 
under any coordinate transformation in R,(a). 

The Hessian matrix has in principle been given by examining the Taylor expansion 
of the adiabatic potential. Now we define the Taylor expansion of the adiabatic 
potential U which is applicable to any curvilinear coordinate system as follows: 

U(x+ A x ) =  U(x)+ Ull)(x) Aui+(1/2)U~y(x) Au i AuJ+O((Ax) 3) (4.29a) 

where the local distance vector Ax (IAxl is supposed to be sufficiently small) is 
represented on R,(a) as (see Fig. 5) 

A x ( = A r) = A uiei(x) ; A u i = el(x) �9 A x (4.29b) 

and where the U~ (~) and U{ff ) are defined by the covariant derivatives of U: 

U~(1)= 8U/~q ~ (4.29c) 
(//(2)= ~72 U/Oq' Oq j -  F~j ~? U/Oq k. (4.29d) 

By using covariant derivatives of U for the coefficients of each order of Ax, we have 
obtained the required form of the Taylor expansion which has the superior pro- 
perty of invariance under coordinate transformations. Now we define an extended 
Hessian matrix IIHul[ using Ui~ ) as 

Hij= (2) U u = (32 U/~3q ~ c~q j - F~ ~3 U/~3q k. (4.30) 
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Fig. 5. T h e l o c a l d i s t a n c e v e c t o r A r = A x o n t h e d y n a m i c a l  

p l a n e  x 3N + ~ = E =  c o n s t  

x3N*I 

Dynamical ptane --> 
x3N+l=g . . . . .  t. I ~ z~" -> 

xJ 

This differs from the usual definition of the Hessian matrix by the term 
- F ~  ~?U/Oqk; this term ensures ]JHuH to be a symmetric covariant tensor of the 
second order. Then, we define extended normal vibrations by diagonalizing the 
Hessian matrix as 

(Hi j -#ai j )vJ=O; vJ=dq~/ds~. (4.31) 

The n solutions of this equation define the vectors of normal vibrations v(~)= vi~ )e i 
(~ =- 1 . . . . .  n). The explicit forms are given by 

(Hi j -  #~ai j)v{~) = 0 (4.32a) 
i ) _ Huv(~)v(p ) - #~ 5~p (4.32b) 

i J = 5 ~ .  (4.32c) aijv(~)v(fl) 

The vectors of normal vibrations thus defined are invariant under any coordinate 
transformation: 

v(~) = vli~)e[ = vi~)e i (4.33) 

where vi~) is the transformed vector component in terms of the transformed basis 
e~. Also, the eigenvalue #~ is of course invariant. The normal coordinates may be 
defined by the orthogonal curves that are everywhere tangent to the vectors of 
normal vibrations. 

Using the above, we estimate the Taylor expansion of U; in particular, along the 
meta-IRC. 

(A) At a normal point on U: Using the solutions of (4.31), the Taylor expansion of 
U is reduced from (4.29a) to a diagonalized form as follows' 

U(x + Ax) = U(x) + Ui(t)(x) Au i + (1/2) ~ #~(Ay~) 2 + O((Ax) 3) (4.34a) 

u{l)(x) Au ~= ~, U{l)(x)vi(~) Ay ~ (4.34b) 

i i n  Aui: where Ay ~ is the weight of v(~) 
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n 

i Au i= ~ v(~)Ay ~ (4.34c) 

Ay ~ = v(~)i A u i. (4.34d) 

Note that the coefficients Ay ~ (c~ = 1 . . . . .  n) themselves may be referred to as the 
"local normal coordinates" that are 1) defined at each point x, and 2) used as the 
local coordinates which describe the normal vibrations at the point. At the same 
time, the kinetic energy (1/2) (2 + A ~)z = (1/2) A~ 2 is also diagonalized at the point 
x as 

2 1 
(1/2) A2 = ~  ~ (A3~) 2. (4.35) 

cr 

If we employ the coordinate system which is given along the meta-IRC by (4.16), 
then we have only one linear term of Ax in the Taylor expansion : 

,. 1 
U(x+ Ax)=  U(x)+ U{, ~1) Au +~ i #~(AY'~)2 +O((Ax) 3) (4.36a) 

~ = 1  

U~ (1) Au'"= i r7,(1),,,, Ay,~. (4.36b) 
c~=l 

Also, in this case, the kinetic energy is diagonalized at x as 

2 1 (1/2) A2 =~  ~ (A3~'=) 2. (4.37) 
g = l  

These formulas (4.36), (4.37) are the most fundamental representation of the 
Lagrangian of the system along meta-IRC in terms of the local normal coordinates 
Ay '~ (~ = 1 . . . . .  n). 

Furthermore, it may be more appropriate to block-diagonalize the Hessian matrix 
in the equi-potential q'"-surface (see Fig. 4): because, from chemical intuition, it is 
supposed to be useful to separate the promoting mode of the chemical reaction 
along the meta-IRC from the residual n - 1 normal vibrations in the equi-potential 
surface. We can do this with ease if the equi-potential q'"-surface is considered to 
be an n -  1-dim. Riemannian surface, that is, if 

detlla~j!lr ( i , j = l  . . . .  , n - l )  (4.38) 

holds. Then, we obtain the Taylor expansion in the reduced diagonal form as 

U(x + Ax) = U(x) + U~, Au'" + (1/2)H~,,(Au'")2 
1 , 1-- , -  t . . . . .  J A '" Ay '~ + 0((Ax) 3 ) (4.39) q-~ /~(AY 'a)2q- 2 MnjV(cO U 

~ = 1  ~ = 1  

where /~ ,  ~ii~), AK ~ are the corresponding quantities of #~, v~i~), Ay '~, which are 
obtained in the n -1 -d im,  q'"-surface. We have a simple estimate of the off- 
diagonal component of the Hessian matrix as 

H~,i = ~ z U/~q'" ~qV - F~,~ ~ U/Oq'" (4.40) 
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Also, the kinetic energy is obtained in the reduced diagonal form as 

~ n - 1  

(1/2)Ax2=(l/2)a',,(Afi'")2 + ~ (Ay'~) 2 
0~=1 

n - -1  

+ ~ a,jv(~)' -'j Aft'" A~ '~. (4.41) 
z~=: 1 

In these fundamental formulas (4.39), (4.41), the local coordinate Au '" corresponds 
to the promoting mode of the chemical reaction, and the local coordinates A~ '~ 
(~= 1 . . . . .  n - 1 )  correspond to the residual normal vibrations in the equi- 
potential q"-surface. These reduced diagonal forms of the potential and kinetic 
energies are supposed to be characteristic of chemical reactions proceeding along 
curvilinear reaction coordinates�9 Interestingly, along the normal meta-IRC, we 
have from (4.20) that l) the condition (4,38) is satisfied, and 2) the kinetic energy is 
exactly diagonalized at each point: 

1 (1/2)A22=( . . . .  2 1/2)a,,(Au ) +2 (AY'~)2" (4.42) 

Regrettably, the off-diagonal term H' j  in the potential energy does not vanish even 
though the chemical reaction proceeds along the normal meta-IRC: 

H~j = - (1/2a~,),{0as (0 U/Oq'") (j r n). (4.43) 

These results are useful for separating the promoting mode of nuclear rearrange- 
ments corresponding to the change of reacting system along the meta-IRC from 
the residual normal vibrations. 

Furthermore, particularly in the case when the meta-lRC is also a geodesic curve 
,n __ ,j __ in __ on R,(a), which is of course a normal meta-IRC, we have F , - f n n - F n j - O  

( j=  1 . . . . .  n - 1 )  and (4�9 Then, the off-diagonal component of the Hessian 
matrix becomes zero: 

H'j=0 (j:/=n). (4.44) 

It follows that the Taylor expansion of U is reduced from (4.39) to a diagonalized 
form : 

U ( x - ~  A x )  = U ( x ) ~ -  U n  (1) A b l ' n - ~ ( 1 / 2 ) H n n ( Z l b l m )  2 

+~ ~=~ fi~(AY'~) 2 +0((Ax)3). (4.45) 

The correspondence with the results of (4.34) is as follows 

l~, = H' ,  = 02 U/( Oq'")2 (4.46a) 

/~=fi~ (c~= 1 . . . . .  n -  1) (4.46b) 

Ay'"=Au'", i.e., v(',)~=6,~ for v(,) (4.46c) 

Ay'~=Ay '~ (c~-- 1 . . . .  , n -  1). (4�9 
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Then, we obtain the Lagrangian of the chemically reacting system proceeding 
along the geodesic meta-IRC as follows: 

1 
(A~'~)2- U(x + Ax) (4.47a) L(x + A x ) = 5  , :  l 

1 " 
U(x + Ax)= U(x)+ g[, ~1) Ay'"+~ ~, #~(Ay'~)2 +O((Ax)3). (4.47b) 

a~=l 

We may say therefore that one of the normal coordinates, which is locally 
represented by Ay '~, indicates the promotion of the chemical reaction along the 
geodesic meta-IRC. 

(B) At an equilibrium point P~q on U: Here, the linear terms of A x vanish from the 
Taylor expansion of U. Also, the Hessian matrix becomes a simple form as 

Hij = 92 U/aq i Oq J. (4.48) 

Then, the normal coordinates satisfy 

(OEU/Oq ~ ~qJ-#a~j)v~=O; v~=dqJ/ds,. (4.49) 

This is nothing but 1) the equation of lines of curvature at Peq with # = p that is 
given by (3.40), and 2) the equation of meta-IRC at Peq with # = 2 that is given by 
(4.28). It follows that the three kinds of unique curves are tangent with each other 
at Peq" In this case, we have from (3.15) that the unit normal vector of the potential 
energy surface U becomes 

n = ( 0 , . . . ,  0, 1). (4.50) 

This property is particularly useful when we consider the local geometry of U and 
meta-IRC in the neighborhood of the transition point P,r; the tangent plane of U 
at Ptr is nothing but the equi-energy plane x 3N + 1= U(P~)= const, on which plane 
the airplane can narrowly fly across Ptr" Note that the path of the airplane goes 
along the meta-IRC and is confluent with the line of negative curvature at Ptr" 
Therefore, we can say that the meta-IRC 9oes alon9 the axis of the Dupin indicatrix 
at Pt~ and passes the vertex, P~, of the asymptotic cone which, in the neighborhood of  
the transition point Pt~, is described by the cone of intersection between the equi- 
energy plane x 3N+ 1 = U(Ptr ) = const, and U. In this case, the promoting mode of the 
chemical reaction at Pt~ corresponds to one of the normal vibrations which is 
characterized by a negative force constant. 

Clearly, the achievement of this geometrical property indicates the effectiveness of 
our particular choice of Riemannian surfaces R,(a) and R,(b). Moreover, we show 
in Sect. 5 that this property facilitates the pattern recognition of chemical reactions. 

5. Example 

We shall illustrate a model potential surface, which represents a typical pattern of 
isomerization reactions, and some of the results of the presented theory will be 
elucidated. 
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Let us consider  the model  potent ia l  energy surface as a funct ion o f  two mass-  
weighted Car tes ian coordina tes  which will be conveniently denoted by x 1 and x 2 : 

U(x 1, x2) -=(1/a2)x2(x l  - 1)2 +(1 /b2)x2;  a > b .  (5.1) 

Here,  the generalized coordinates  are also chosen as xl and x 2. The x 3N+ t ' th  
coordinate  for energy is now writ ten as z. The shape of  this model  potent ia l  surface 
is depicted in Fig. 6(a). The a = b  case is also found in [19]. 

- x  2 

(a) 

C 

i 2 

I 
r 

I 

I 
I 

I 

(b) 

x I 

Fig. 6. a) The shape of the model potential surface U given by (5.1) of the text. b) The solutions of 
meta-IRC (denoted by arrows) and the line of intersection between U and the equi-energy plane 
z= U(B) 

There are three equi l ibr ium points  A, B, and C on this surface. The Dupin  indi- 
catrix at A, B, C is obta ined  by using magnified local coordinates  t/1 and q2 as 
follows : 
A: Stable equi l ibr ium point  = elliptic poin t  

( 1 / a 2 ) ~  + (1/b2)~] = 1. (5.2) 

B.' Transi t ion point  = saddle = hyperbol ic  poin t  

- (1/2a2)t /~ + (1/be)q22 = _+ 1. (5.3) 

C: Stable equi l ibr ium point  = elliptic po in t  

(1/aZ)r/2 + (1/b2)~/2 = 1. (5.4) 

Now,  the distr ibution o f  hyperbol ic  points  is confined to a domain  ~_ < x  1 <c% 

(e• = (3 _+ x/~)/6),  which is i l lustrated as the shaded region in Fig. 7. In this domain ,  
a pair  o f  a sympto t i c  curves are found.  Let 0 be a pa rame te r  satisfying 

- re~2 < 0 < ~z/2. (5.5) 

Then,  the asympto t ic  curves of  the surface at B are given by 

x 1 = 1 / 2 + ( x f l i 2 / 1 2  ) sin 0 (5.6) 

x 2 = _+ (V/6/48) (b/a) (sin 20 + 20). (5.7) 
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The crossing point of this pair of asymptotic curves corresponds to 0 =0  and is 
nothing but the saddle B. Then, in the neighborhood of B, we have 

x i ~ 1/2+ (x /~ l12)0  

x 2 ~ + (x /6 /12) (b /a)O 

and therefore, in the limit as 0 ~ 0 we have 

- (lf2a 2) [(xl - 112)10] z + ( l lb2)(x210)  z = 0  (5.8) 

which shows that this is nothing but the equation for the asymptotic curves of the 
Dupin indicatrix (5.3) with r# 1 oc (x i - 1/2)/0 and t#2 oc x2/O. 

> x 1 

Fig. 7. The shaded region e_ < x  1 <~+ (a+ =(3  +_x/3)/6) 
describes the distribution of hyperbolic points of the 
model potential surface 

The solutions of meta-IRC are now obtained in closed form: 

X 1 ~-0, 1/2, 1 (5.9) 

X2--~.C X [iX1] X IX 1 - -  l] X iX 1 - -  1 /2  I -  2].2/b2 

where c is a constant. In the neighborhood of A, B, C, the allowed solutions of  
meta-IRC are given by 

A. x i = 0  (5.10) 

x~,-, c • (4 Ix , I )  ~ 

B." x i =  1/2 (5.11) 
X 2 ~ C • (4iX 1 - -  1/2]2) -az/b2 

C: x i = l  (5.12) 
x 2  ~ c x ( 4 I x  1 - l I) ~ 

Some of the solutions ofrneta-IRC are shown in Fig. 6(b) by arrows. The direction 
of an arrow indicates that of  the gradient field. In particular, at the transition point 
B, the allowed meta-IRC corresponding to the critical motion on the ridge is 
denoted by a broken line. Now, let us consider the IRC which traces the mode of 
isomerization from A through B to C. The solution of the IRC appropriate for 
the isomerization reaction is 

xz  = 0 (5.13) 
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which corresponds to c=0 in (5.9). Note that this IRC is a geodesic line of curva- 
ture and therefore a plane curve (see, Sect. 3.3.), where the equation of this plane 
is also x 2 = 0 in the Euclidean 3-dim. xlXzz-space. In this case, the vectors of normal 
vibrations at each equilibrium point are the same and are given by 

v(1)=(1, 0), v~2)=(0, 1) (5.14) 
and the eigenvalues (force constants) are given by 

A. Pl =2/a2, P2 =2/b2 (5.15) 

B. p l = - l / a  2, p2=2/b 2 (5.16) 

C: P1=2/a2, P2=2/b2. (5.17) 

Note that there are many solutions of meta-IRC which are confluent at the stable 
equilibrium points A and C. This ensures that any reaction starting at a non- 
equilibrium point on U in the neighborhood of some stable equilibrium point 
finally reaches that equilibrium point along the unique meta-IRC. Also, at the 
stable equilibrium points, every meta-IRC is tangent to only one vector v(1), along 
the IRC x 2 =0, which corresponds to the normal vibration of the weaker force 
constant Pl --2/a2. It may be said therefore that the normal mode corresponding 
to the weaker force constant at the stable equilibrium point has a flexibility of 
accepting any promoting mode of the chemical reaction proceeding along the 
meta-IRC; conversely, the weaker normal vibration may have a flexibility of 
leading any mode of chemical reaction which starts at the stable equilibrium point 
(except those reactions proceeding along the isolated meta-IRC which is tangent 
to the normal vibration of the stronger force constant at the stable equilibrium 
point). 

/ 
/ 

r 

\ I 
\ f 

/ 
1 

(~  (b) (c) 

Fig. 8a-c. Pattern recognition of chemical reactions from the 2-dim. cross-sectional viewpoint. 
Fundamental patterns of a) isomerization reaction, and b) fragmentation reaction from A through B 
to C. c) shows that the meta-IRC should bisect a pair of  asymptotic curves at any transition point P.. 
The "knot"  pattern itself represents the dual geography of  the potential surface U2 obtained by reversing 
the orientation of  U: U--~ U~- - U 

Furthermore, it should be noted that the line of intersection between U and the 
equi-energy plane z = U(P t r  ) = const, allows the recognition of patterns in chemical 
reactions. The pattern of Fig. 8(a) is a generalization of Fig. 6 and describes the 
isomerization reaction A --~ B--+ C, and the pattern of Fig. 8(b) describes the 
fragmentation reaction A--+ B-~ C. These patterns may be considered to be the 
most fundamental patterns of chemical reactions. By folding, twisting, indenting, 
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piling these patterns,  one may  obtain any kind o f  reaction pat tern and may also 
classify the modes o f  complicated reactions (see Fig. 9). In this connection,  the 
work of  Krivoshey and Sleta [20] may  be helpful for this kind of  pat tern recogni- 
tion. Essential informat ion needed to draw the patterns are 1) at any transit ion 
point, the curves o f  intersection between U and the equi-energy plane merge into a 
pair of  asymptot ic  curves, and therefore, 2) the me ta - IRC should bisect the two 
asymptot ic  curves (see Fig. 8(c)). Fur ther  discussion of  these points will appear  
elsewhere. 

(a) 

(d) 

Fig. 9a-d. Basic operations to the 
fundamental patterns of Fig. 8a and b, 
yielding complicated patterns of chemi- 
cal reactions from the 2-dim. cross- 
sectional viewpoint, a) Folding; note 
that this operation converts the pattern 
of isomerization reaction of Fig. 8a 
into that of fragmentation reaction of 
Fig. 8b. b) Twisting. c) Indenting. 
d) Piling; note that in this case as 
pattern may be disconnected we do not 
require that all levels of Ptr's should be 
the same. Trivial operations such as 
shrinking (of several saddles) are 
omitted 
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Appendix 

In this Appendix,  we prove the following theorem. 
Theorem:  A geodesic line o f  curvature r is a plane curve in Rn+ 1 : 

l. r = const. (A1) 

where I is a fixed non-null  vector :  

1= (l)i  e i -}- ( ! ) ,  + in. (A2) 

This is an extension o f  the well-known result for a curve in 3-dim. Euclidean space 
[14]. We shall prove this theorem in n + l-dim. Riemannian  space R,+ 1. 

The p roo f  proceeds in two steps. 1) First, we prove the following lemma. 

L e m m a :  The necessary and sufficient condi t ion that the curve r should obey in 
order to satisfy (A1), which is now written as 

(l)i(v) i + (!), + l(r)" + 1 = const.,  (A3) 
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((,)1 . - .  (F(n+l))l (el ~) . .  (et..r(,,§ 

det  (i) . . . .  ( r ( , ; l ) )  . = d e t  (e'[~) (e~'r('+~)) II =0 
i1(~)o§ . .  (,.(~§ 1,)~§ I/( '~)  ( " / ~ §  ~') II 

where �9 signifies the derivative with respect to the arc length s of the curve. 

(A4) 

Proof: 1) Necessary condition. By successively differentiating (Al) n +  1 times, 
we have 

(t)~(~)' + (t).+ ~(~)~+ ~ =o 
: (A5) 

(i)i(r(,+ 1))i+ (1),+ l(r(,+ ~)),+ t=0" 

Then, by eliminating (/)i and (/),+ ~, we obtain (A4). 2) Sufficient condition. If(A4) 
holds, one can choose a non-null vector/satisfying 

[-~=0, i.e,, (~i(ei.i')+(~n+l(n.i')=O 
: (A6) 

[-r~ i.e., (~i (e i . r ("+l))+(~, ,+l(n .r("+t))=O.  

By differentiating the first n equations of (A6), one has 

1.J;=0, i.e., ( ~ ( e ~ . ~ ) + ( ~ . + ~ ( n . i ) = O  

; (A7) 
z.,.(~,--- 0, i.e., (/3,(~'./~') + (/5o+ ~ ( . / ~  = 0. 

Now, let us suppose that the determinant D" defined by 

(e l l i , )  . . .  (ellr(")) 

D ' = d e t  (e"-" ' .I;) (en- 1 .r(')) l I (AS) 
II("e) ('"~) IJ 

is non-zero (assumption 1). Then, by introducing a set of determinants {D"(a ~ n)} 
which are the same as D" except that the a'th column is replaced by the vector 
((e" ./') . . . . .  (e ' .  r(n))) : 

(el . i , )  . . .  (el.r(~)) 
2 2 

Dn(a~--~n)=det (e".iO " "  (e'-'r (~)) ~ a ' t h ,  (A9) 

(e,;1./.) . . .  (e,-t .r( ,)) 

(n . i )  . . -  (n-r  (~ 

we obtain the solutions of (A6) and (AT) as follows: 

(ha = - ( ~ , , D ' ( a . ~  n)/D"; a =  1 . . . . .  n -  1 , n +  1 =-n (A10) 

(i~), = - ( ~ , D " ( a  ~-~ n)/D"; a=  1 . . . . .  n -  1, n +  1 - n .  (A1 1) 
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Here, it is assumed that there exists a coordinate system {q l . . .  qnx3N+l } in R,+I 
which ensures that all the D"(a +--, n) are non-zero (assumption 2). Therefore, for the 
a'th component associated with non-zero D"(a ~ n), we have 

(h~/(h~ = (h . / (h . .  (A12) 

If we set (A 12) equal to a(s) and integrate we have 

/(s) = ! exp [jr ds] (A 13) 

where/is  a fixed non-null vector. Thus, by substituting (A13) into the first equation 
of (A6), we obtain 

1.•=0 (A14) 

and finally (A1). 

Apparently, when D " = 0  (when assumption 1) breaks down), the curve retro- 
gresses to a plane curve in a lower-dimensional Riemannian space, that is, 
n-dim, q l . . .  q,-lx3U+ 1-space, which may be proved with ease by using mathe- 
matical induction. Likewise, if assumption 2) does not hold, then it can easily be 
shown that assumption 1) also breaks down for some coordinate system; in this 
case, the curve also retrogresses to a plane curve in a lower-dimensional Riemannian 
space. 

(2) Second, a geodesic curve satisfies (3.31). Moreover, it follows from (3.37) that 
the geodesic line of curvature satisfies 

r ( 3 )=  pi t  - -  p2O. (A 15) 

Then, r is represented by a linear combination of f and i; as 

r ~3~ = (D/P)~- P 2k (p = 0 case is trivial). (A16) 

By combining (A16) and the lemma, we can prove the theorem. 
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